DOBRE-2 WARR profile: the Earth’s upper crust across Crimea between the Azov Massif and the northeastern Black Sea

V. STAROSTENKO1*, T. JANIK2, R. STEPHENSON3, D. GRYN1, O. RUSAKOV1, W. CZUBA2, P. ŚRODA2, M. GRAD4, A. GUTERCH2, E. FLÜH5, H. THYBO6, I. ARTEMIEVA6, A. TOLKUNOV7, G. SYDORENKO7, D. LYSYNCHUK1, V. OMLECHENKO1, K. KOLOMIYETS1, O. LEGOSTAEVA1, A. DANNOWSKI5 & A. SHULGIN8

1Institute of Geophysics, National Academy of Sciences of Ukraine, Kiev, Ukraine
2Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
3School of Geosciences, King’s College, University of Aberdeen, Aberdeen, UK
4Institute of Geophysics, University of Warsaw, Warsaw, Poland
5GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
6Department of Geography and Geology, University of Copenhagen, Copenhagen, Denmark
7State Geophysical Enterprise ‘Ukrgeofizika’, Kiev, Ukraine
8Department of Geosciences, University of Oslo, Oslo, Norway

*Corresponding author (e-mail: vstar@igph.kiev.ua)

Abstract: The DOBRE-2 wide-angle reflection and refraction profile was acquired in June 2007 as a direct, southwestwards prolongation of the 1999 DOBRefraction’99 that crossed the Donbas Foldbelt in eastern Ukraine. It crosses the Azov Massif of the East European Craton, the Azov Sea, the Kerch Peninsula (the easternmost part of Crimea) and the northern East Black Sea Basin, thus traversing the entire Crimea–Caucasus compressional zone centred on the Kerch Peninsula. The DOBRE-2 profile recorded a mix of onshore explosive sources as well as airguns at sea. A variety of single-component recorders were used on land and ocean bottom instruments were deployed offshore and recovered by ship. The DOBRE-2 datasets were degraded by a lack of shot-point reversal at the southwestern terminus and by some poor signal registration elsewhere, in particular in the Black Sea. Nevertheless, they allowed a robust velocity model of the upper crust to be constructed along the entire profile as well as through the entire crust beneath the Azov Massif. A less well constrained model was constructed for much of the crust beneath the Azov Sea and the Kerch Peninsula. The results showed that there is a significant change in the upper crustal lithology in the northern Azov Sea, expressed in the near surface as the Main Azov Fault; this boundary can be taken as the boundary between the East European Craton and the Scythian Platform. The upper crustal rocks of the Scythian Platform in this area probably consist of metasedimentary rocks. A narrow unit as shallow as about 5 km and characterized by velocities typical of the crystalline basement bounds the metasedimentary succession on its southern margin and also marks the northern margin of the northern foredeep and the underlying successions of the Crimea–Caucasus compressional zone in the southern part of the Azov Sea. A broader and somewhat deeper basement unit (about 11 km) with an antiformal shape lies beneath the northern East Black Sea Basin and forms the southern margin of the Crimea–Caucasus compressional zone. The depth of the underlying Moho discontinuity increases from 40 km beneath the Azov Massif to 47 km beneath the Crimea–Caucasus compressional zone.
Fig. 1. Tectonic map of the study area and its location on the southern margin of the East European Craton (EEC) in a European context (red box on the inset map; the solid line marks the approximate boundary between the EEC and Phanerozoic Europe and the dotted line marks the approximate northern limit of the Alpine orogenic belt).

The pink colour represents the Precambrian basement of the EEC; the darker colour is the Azov Massif (AM) and the Voronezh Massif segments (VM) and the lighter colour is the Scythian Platform (ScP) on its southern margin (e.g. Kruglov & Gursky 2007). The Dniepr–Donets rift (DDR) basin and its contiguous uplifted Donbas Foldbelt (DF) segment are coloured in dark and light yellow, respectively. The structural elements defined in the Azov Sea (NAT, North Azov Trough; AzR, Azov Ridge; MAU, Middle Azov Uplift; IKT, Indolo-Kuban Trough) are from Gerasimov et al. (2008). The main Crimea–Greater Caucasus compressional zone, which also lies offshore as shown, is shown in brown. Structural elements in the northeastern Black Sea (ST, Sorokin Trough; SR, Shatsky Ridge; AnR, Andrusov Ridge; WBSB and EBSB, Western and Eastern Black Sea basins, respectively) are drawn...
Sydorenko et al. (this volume, in prep). From the NE, the DOBRE-2 profile crosses the Azov (sometimes referred to as the pre-Azov) Massif part of the Ukrainian Shield, with its exposed basement of Precambrian East European Craton, the adjacent peri-cratonic Scythian Platform and the northern margin of the Alpine–Tethys orogenic belt as expressed by the Crimea–Greater Caucasus Mountains and the eastern Black Sea (Fig. 1). The DOBRE-2 profile is a direct prolongation of the DOBREfraction’99 profile (DOBREfraction’99 Working Group 2003), with about 100 km of overlap (Fig. 1). The two profiles together form one continuous transect of length 775 km from the Voronezh Massif (the East European Craton north of the Donbas Foldbelt; Fig. 1) to the eastern Black Sea (Fig. 2).

The geological structure of the area crossed by DOBRE-2 includes tectonic features ranging in age from the Precambrian to Cenozoic (cf. Stephenson et al. 2004; Gozhyk et al. 2006; Khain et al. 2009). As a result of this heterogeneity and a generally poor knowledge of the deep structure and buried sedimentary layers, the deeper geology of the region remains contentious. The main purpose of the DOBRE-2 project was to image the relationship between the crust and the overlying sedimentary successions to elucidate the evolution of the sedimentary successions and the hydrocarbon systems developed within them and, in so doing, to elucidate the tectonic history of this key segment of the southern margin of the European continent.

Attempts have recently been made to determine the velocity structure in the Azov Sea and the Eastern Black Sea, in the present study area, by reconsidering legacy seismic data (DSS profile 28/29; cf. Fig. 1). The ray-tracing results of Yegorova et al. (2010) are not principally dissimilar to the original results based on graphical methods (Moskalenko & Malovitsky 1974). This is perhaps not surprising because the original analogue seismograms and travel-time curves from profile 28/29 now exist only on paper; recent reinterpretations are therefore based on figures and photographs from various old reports and publications. In any case, the intrinsic shortcomings of analogue recordings — such as their small dynamic range, low signal-to-noise ratio and waveform simplifications — preclude much advantage to obtain new insights into the crustal structure of this key geological domain.

Regional tectonic setting

The DOBRE-2 profile begins on the northern margin of the Azov Massif, which is part of the Archean–Paleoproterozoic East European Craton; cf. Fig. 1). To the south, the Azov Sea overlies the southern margin of the East European Craton and the Scythian Platform, which is probably underlain by a younger (Proterozoic) continental fragment that accreted to the East European Craton in late Proterozoic or earliest Palaeozoic times (e.g. Gee & Stephenson 2006; Saintot et al. 2006a). There is some stratigraphic and magmatic evidence for compressional deformation of Late Triassic–Early Jurassic age in the area (Stovba & Stephenson 1999; Alexandre et al. 2004; Nikishin et al. 2011), which affected the East European Craton and Scythian Platform.

The basement structure of the Azov Sea is traditionally subdivided into a number of smaller tectonic elements (Fig. 1). These include the North Azov Trough, overlying the East European Craton basement and separated from the Azov Massif segment of the East European Craton onshore to its north by a step-like fault zone. To the south, the Azov Ridge and the Middle Azov Uplift represent basement uplifts below the northern margin of the

Fig. 1. (Continued) according to the Ukrgeofizika data (cf. Sydorenko et al. this volume, in prep). The solid black lines indicate the locations of the DOBRE-2 and DOBREfraction’99 WARR and regional CDP profiles discussed in this paper; the thicker segment is where the DOBRE-2 and DOBREfraction’99 profiles overlap. For more detail see Figure 2. The dark grey—green lines indicate the locations of the two legacy DSS lines in the offshore study area (28 and 29; cf. Yegorova et al. 2010) and the recently compiled and published DOBRE-5 profile (Starostenko et al. 2015a). Also shown are the locations of wells (black dots in circles with names) in the Azov Sea and northeastern Black Sea, either mentioned in the text and/or used to constrain the velocity modelling presented in this paper (Sub-403, Subbotina 403; Vul-1, Vulkaniivska 1; Vul-3, Vulkaniivska 3; Vul-6, Vulkaniivska 6; Mshk-1, Moshkarivska 1; Mar-1, Marivska 1; N Sel-3, North Seleznivska 3; Sl-6, Slusarivska 6; El-1, Electronrozduvalna 1; Beis-201, Beisugska 201; Zhovt-245, Zhovtneva 245; Br-2, Berdyanska 2. Cities are indicated by small, yellow-filled circles; Kerch lies on the Kerch Peninsula and Simferopol on the Crimean Peninsula.
Fig. 2. Physiography and bathymetry in the study area and detailed locations of the seismic profiles discussed in this paper. Onshore receiver locations for DOBRE-2 (cf. Table 2) and DOBREfraction’99 are indicated by brown and blue dots, respectively; offshore receiver locations for the former are indicated by small red open circles connected by dashed white lines (indicating the airgun shooting line; cf. Table 1) and labelled with the recorder number (cf. Table 3). Onshore shot points are indicated by red stars, labelled SP15001–15006 and SP1–SP11 for DOBRE-2 and DOBREfraction’99, respectively. Related, near coincident, regional seismic reflection profiles are indicated by yellow-cored lines. Cities are indicated by small, yellow-filled circles; Kerch lies on the Kerch Peninsula and Simferopol on the Crimean Peninsula.
mainly Cenozoic Indolo-Kuban Trough. The Indolo-Kuban Trough consists of two separate sub-basins to the north of the Cenozoic Crimea–Caucasus compressional zone.

The Early Cretaceous and younger Black Sea Basin post-dates the early to middle Jurassic Greater Caucasus Basin that was inverted in the Cenozoic to become the present day Greater Caucasus Orogen (e.g. Saintot et al. 2006b; Nikishin et al. 2011). Both are believed to be back-arc basins formed mainly within strong Precambrian peri-cratonic lithosphere and in an extensional environment related to the northwards subduction of Neo-Tethys or associated oceans (Barrier & Vrielynck 2008) lying south of the study area. The regional structural architecture of the Black Sea Basin is broadly consistent with that predicted by a geodynamic model in which extension is driven by (subducted) slab rollback (Stephenson & Schellart 2010). The age and style of opening of the Black Sea’s western and eastern basins, hereafter referred to as the Western and Eastern Black Sea basins (WBSB and EBSB, respectively), remain controversial given the shortage of robust data about the ages of the oldest sediments and correct information about the type of crust beneath them. Opinions range from the Jurassic to Eocene (Zonenshain & Le Pichon 1986; Okay et al. 1994; Vincent et al. 2005). Hippolyte et al. (2010) argued in favour of diachronous rifting in the Black Sea on the basis of new micropalaeontological age data from its inverted margin in the Turkish Central Pontides, with rifting in the WBSB starting in the Late Barremian (Early Cretaceous) and predating younger rifting in the EBSB. Nikishin et al. (2015b) concluded from new regional seismic profiles covering the whole of the Black Sea that rifting and basin formation throughout was of Cretaceous (Barremian–Santonian) age.

The northern margin of the Black Sea in general – and in this study area the northern EBSB in particular – has been strongly modified since the Eocene by compressional tectonics related to the collision of the Eurasian and Arabian plates. There is evidence of discrete inversion events in the EBSB at the end of the Middle Eocene, during the Late Eocene, at the end of the Oligocene and from the Middle Miocene to the Pliocene (Khriachtchevskaia et al. 2010; Stovba & Khriachtchevskaia 2011). Field observations in Crimea and the interpretation of marine common depth point (CDP) profiles suggest that the region from Dobrogea to at least the northwestern Caucasus is an inverted Early Cretaceous rift system of strongly variable configuration (Stovba & Khriachtchevskaia 2011). The main inversion zone in the study area (Fig. 1) consists of the western prolongation of the Greater Caucasus orogeny across the Kerch Shelf through to the Crimean Mountains on the southern margin of the Crimean Peninsula.

In addition to this, there are numerous typical inversion features elsewhere that were formed by compression on previously normal rift faults – for example, in the Sorokin Trough on the southern margin of the main inversion zone (Fig. 1). The Andrusov Ridge (Fig. 1), part of the Mid Black Sea Rise separating the WBSB and EBSB, has resulted from inversion tectonics in a zone of earlier high amplitude normal faults formed during the Early Cretaceous Black Sea rifting, as has the Shatsky Ridge (Fig. 1) and related features forming the northeastern margin of the EBSB. Similar ages of compressional deformation have also been observed on the southern Black Sea margin and the central Pontides of Turkey (Hippolyte et al. 2010).

WARR data acquisition

The DOBRE-2 field acquisition programme took place in June 2007. It consisted of an onshore and offshore programme of seismic sources and recordings (Fig. 2). Onshore sources were recorded by some offshore recorders and vice versa. Details of the seismic sources are listed in Tables 1 and 2.

Onshore, 150 land seismic stations (1-component RefTek Texans) were deployed along the Azov Massif and Kerch Peninsula segments at intervals of about 1.5 and 1 km, respectively. There were six chemical explosions (600–1000 kg TNT) on land, four on the Azov Massif and two on the Kerch Peninsula (Fig. 2). The onshore shot points and corresponding shot gathers were numbered 15001–15007.

The offshore programme was carried out using two research ships, the Iskatel and Topaz. A total

Table 1. DOBRE-2 offshore shooting programme using a 25 l airgun source

<table>
<thead>
<tr>
<th>Shot point number</th>
<th>Location</th>
<th>Latitude (°N)</th>
<th>Longitude (°E)</th>
<th>Depth (m)</th>
<th>Time UTC (yyyy:ddd:hh:mm:ss.sss)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>43.39827</td>
<td>35.42127</td>
<td>2150</td>
<td>2007:157:14:00:45.904</td>
</tr>
</tbody>
</table>
of 23 ocean bottom seismometers (OBSs) and ocean bottom hydrophones (OBHs) were deployed in the Black and Azov seas, although one from the Black Sea was not recovered. The distance between stations was c. 11.25 km in the Black Sea and 14 km in the Azov Sea. Acquisition was carried out in two deployments. The first consisted of 19 OBSs and OBHs in the Black Sea (only 18 were recovered) and three in the Azov Sea. For the second deployment, 13 recorders were moved to the Azov Sea and five were left in the Black Sea (including the eventually unrecovered recorder). The recorder types, locations and depths are summarized in Table 3.

The seismic source at sea was an array of airguns with a total capacity of 25 l onboard the *Iskatel*; they were shot every 60 s on average, equivalent to about a 150–160 m interval. The total number of shots was 1187 in the Black Sea over 178 km of profile and 1085 in the Azov Sea over 173 km of profile. The shot gathers compiled for the OBSs and OBHs were numbered 07001–07028. Shooting was interrupted as necessary while operating in the Azov Sea to record ocean bottom signals from the onshore shot points.

WARR seismic data and phase correlation

Several P-wave (V_p) phases could be correlated in the seismic data and were used for modelling. Figures 3 and 4 show examples of the seismic record

Table 2. DOBRE-2 onshore shooting programme

<table>
<thead>
<tr>
<th>Shot point number</th>
<th>Location</th>
<th>Latitude ('N)</th>
<th>Longitude ('E)</th>
<th>Height (m)</th>
<th>Time UTC (yyyy:ddd:hh:mm:ss.sss)</th>
<th>Charge (kg TNT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP15001</td>
<td>Azov Massif</td>
<td>46.94333</td>
<td>37.17611</td>
<td>25</td>
<td>2007:161:05:00:11.710</td>
<td>700</td>
</tr>
<tr>
<td>SP15002</td>
<td>Azov Massif</td>
<td>47.12400</td>
<td>37.37800</td>
<td>70</td>
<td>2007:161:06:00:04.180</td>
<td>800</td>
</tr>
<tr>
<td>SP15003</td>
<td>Azov Massif</td>
<td>47.52778</td>
<td>37.80806</td>
<td>95</td>
<td>2007:161:20:00:02.110</td>
<td>600</td>
</tr>
<tr>
<td>SP15005</td>
<td>Kerch Peninsula</td>
<td>45.29944</td>
<td>35.91417</td>
<td>25</td>
<td>2007:161:20:31:00:623</td>
<td>1000</td>
</tr>
<tr>
<td>SP15004</td>
<td>Azov Massif</td>
<td>47.75083</td>
<td>38.07250</td>
<td>120</td>
<td>2007:161:21:00:04:970</td>
<td>600</td>
</tr>
<tr>
<td>SP15006</td>
<td>Kerch Peninsula</td>
<td>45.04444</td>
<td>35.85639</td>
<td>5</td>
<td>2007:161:22:01:00:620</td>
<td>1000</td>
</tr>
</tbody>
</table>

Table 3. DOBRE-2 offshore recorders

<table>
<thead>
<tr>
<th>OBH/OBS number</th>
<th>Location</th>
<th>Latitude ('N)</th>
<th>Longitude ('E)</th>
<th>Depth (m)</th>
<th>Recorder type</th>
</tr>
</thead>
<tbody>
<tr>
<td>07001</td>
<td>Black Sea</td>
<td>43.42640</td>
<td>35.42859</td>
<td>2150</td>
<td>OBH</td>
</tr>
<tr>
<td>07002</td>
<td>Black Sea</td>
<td>43.52435</td>
<td>35.45276</td>
<td>2166</td>
<td>OBH</td>
</tr>
<tr>
<td>07003</td>
<td>Black Sea</td>
<td>43.62129</td>
<td>35.47724</td>
<td>2183</td>
<td>OBS</td>
</tr>
<tr>
<td>07004</td>
<td>Black Sea</td>
<td>43.71873</td>
<td>35.50252</td>
<td>2137</td>
<td>OBS</td>
</tr>
<tr>
<td>07006</td>
<td>Black Sea</td>
<td>43.91296</td>
<td>35.55283</td>
<td>2046</td>
<td>OBS</td>
</tr>
<tr>
<td>07007</td>
<td>Black Sea</td>
<td>44.00885</td>
<td>35.57782</td>
<td>2000</td>
<td>OBS</td>
</tr>
<tr>
<td>07008</td>
<td>Black Sea</td>
<td>44.10702</td>
<td>35.59889</td>
<td>1917</td>
<td>OBS</td>
</tr>
<tr>
<td>07009</td>
<td>Black Sea</td>
<td>44.20533</td>
<td>35.62520</td>
<td>1798</td>
<td>OBS</td>
</tr>
<tr>
<td>07011</td>
<td>Black Sea</td>
<td>44.39937</td>
<td>35.67704</td>
<td>1540</td>
<td>OBS</td>
</tr>
<tr>
<td>07012</td>
<td>Black Sea</td>
<td>44.49738</td>
<td>35.70317</td>
<td>1330</td>
<td>OBS</td>
</tr>
<tr>
<td>07013</td>
<td>Black Sea</td>
<td>44.69060</td>
<td>35.75404</td>
<td>660</td>
<td>OBS</td>
</tr>
<tr>
<td>07015</td>
<td>Black Sea</td>
<td>44.78842</td>
<td>35.78132</td>
<td>82</td>
<td>OBH</td>
</tr>
<tr>
<td>07018</td>
<td>Black Sea</td>
<td>44.98212</td>
<td>35.83265</td>
<td>20</td>
<td>OBS</td>
</tr>
<tr>
<td>07017</td>
<td>Azov Sea</td>
<td>45.45849</td>
<td>36.01915</td>
<td>10</td>
<td>OBH</td>
</tr>
<tr>
<td>07019</td>
<td>Azov Sea</td>
<td>45.59445</td>
<td>36.12379</td>
<td>10</td>
<td>OBS</td>
</tr>
<tr>
<td>07021</td>
<td>Azov Sea</td>
<td>45.73215</td>
<td>36.22877</td>
<td>10</td>
<td>OBS</td>
</tr>
<tr>
<td>07022</td>
<td>Azov Sea</td>
<td>45.86787</td>
<td>36.33333</td>
<td>10</td>
<td>OBH</td>
</tr>
<tr>
<td>07023</td>
<td>Azov Sea</td>
<td>46.00307</td>
<td>36.44069</td>
<td>10</td>
<td>OBH</td>
</tr>
<tr>
<td>07024</td>
<td>Azov Sea</td>
<td>46.14239</td>
<td>36.54835</td>
<td>10</td>
<td>OBH</td>
</tr>
<tr>
<td>07026</td>
<td>Azov Sea</td>
<td>46.45533</td>
<td>36.79372</td>
<td>10</td>
<td>OBS</td>
</tr>
<tr>
<td>07027</td>
<td>Azov Sea</td>
<td>46.60928</td>
<td>36.91596</td>
<td>10</td>
<td>OBS</td>
</tr>
<tr>
<td>07028</td>
<td>Azov Sea</td>
<td>46.72022</td>
<td>37.00525</td>
<td>10</td>
<td>OBH</td>
</tr>
<tr>
<td>07029</td>
<td>Azov Sea</td>
<td>46.82173</td>
<td>37.08685</td>
<td>10</td>
<td>OBH</td>
</tr>
</tbody>
</table>

OBH, ocean bottom hydrophone; OBS, ocean bottom seismometer.
sections. The seismic phases that can be easily identified and correlated include the first arrivals, representing refractions from the crustal sedimentary layers (P_{seq}), the upper–middle crystalline crust (P_c) and the upper mantle (P_m). In the later arrivals, the strongest phase is the reflection from the Moho discontinuity (P_{mP}). Reflections from mid-crustal discontinuities (P_PP) are also observed in some shot records. The seismic record sections show considerable variability in the wave field, reflecting differences in the tectonic structure along the profile. For most of the shot points, the first arrivals can be correlated up to c. 100 km offsets (P_m phase) and to about 350 km (mantle phases), as seen, for example, in Figure 3.

The P_{seq} phases are observed in the part of the profile located on the Crimean Peninsula (SP 15005–15006), with apparent V_p ranging from 2.2 to 2.5 km s⁻¹ at offsets 0–15 km, increasing to 4.0–5.0 km s⁻¹ in the offset range 15–45 km, suggesting a thick sedimentary succession beneath this part of the profile. In the East European Craton (the northeastern part of the profile), the P_{seq} phase is almost non-existent. Starting from the 0 km offset, the P_c phase is observed with apparent V_p of 5.5–6.25 km s⁻¹, most likely representing refractions from the crystalline basement.

Waves propagating in the upper mantle are observed for three shot points (15001, 15005 and 15006) in the offset range 180–350 km, with apparent V = 8–8.5 km s⁻¹. These are interpreted as refractions from below the Moho (P_m). Their late onsets (>180 km offset, 9–10 s reduced time, Fig. 3), even if this is partially caused by the substantial sedimentary thickness, suggest a deep Moho. A strong, high-velocity phase with apparent V_p > 8.5 km s⁻¹, observed for SP 15006 at >300 km offset discontinuity is interpreted as a reflection from a mantle discontinuity (P_{mP}).

Only a few reflections from crustal discontinuities are observed (e.g. SP15005 and 15006). They occur in the 20–40 km offset range and represent reflections from boundaries within the supracrustal sedimentary succession. Deeper reflected waves, interpreted as originating from the top of the lower crust, are correlated over short (c. 20 km) offset intervals for a few shot points only (e.g. SP 15101 and 15106). Reflections from the Moho discontinuity, sometimes hard to correlate due to relatively low signal-to-noise ratios, are observed at offsets >80 km, at c. 7 s reduced travel time (Fig. 4a; OBS 07013).

On the marine parts of the profile, the shallowest refractions, observed in offsets ranging from 0–1 to 0–20 km, are characterized by an apparent V_p of 1.8–2.2 km s⁻¹. The character of the deeper refracted phases allows for the determination of three areas with different uppermost crustal properties: the Black Sea, the Crimean Peninsula and the Azov Sea.

Beneath the Black Sea, the deeper refracted phase is observed in the offset range 5–10 to 20–30 km and shows an apparent V_p of 2.5–2.7 km s⁻¹. This phase is observed only at distances −420 to −280 km along the profile (OBS 07003–07012). The next observed refracted phase has an apparent V_p of 5.6–6.1 km s⁻¹ and most likely represents an arrival from the crystalline basement (P_m). Between OBS 07001 and OBS 07013 this phase can be recognized at c. 15–20 km offset and is observed up to 30–80 km offset, depending on the signal-to-noise ratio. At OBS 07013 (Fig. 4a) it starts at 5 km offset, probably due to the shallowning of the basement horizon.

Further to the NE, beneath the Crimean Peninsula (distances 250–150 km, OBH 07017–OBS 07019), only one 3.6–3.75 km s⁻¹ refracted phase is visible after the 1.8–2.2 km s⁻¹ phase. Deeper refractions, including those from the basement (P_m) are not observed. Beneath the Azov Sea, starting at a distance of −170 km (OBS 07021), a basement reflection is again observed at offsets from 5 to 10 km. It occurs immediately after the shallowest, 1.8–2.2 km s⁻¹ phase. At offsets up to c. 40 km it shows a smaller apparent velocity than in the SW (V_p = 5.0–5.5 km s⁻¹). In some sections (e.g. OBS 07022) it is also observed at larger offsets, up to c. −120 km with an apparent V_p of c. 6.1 km s⁻¹.

The strongest reflected phase observed in the marine data is the sea bottom reflection, together with its several multiples, best seen in the southwestern part of the profile. These multiples were useful for the detailed phase correlation as the signal-to-noise ratio is often best in the first-order multiple. Deeper phases include refractions from the boundaries between individual sedimentary layers (e.g. OBS 07006 and 07009; Fig. 4a) and a reflection from the crystalline basement (OBS07008 and 07021; Fig. 4b). In the OBS 07013 record section (Fig. 4a), reflected arrivals are observed at c. 11 s reduced time and in the −90 to −70 km offset range, possibly representing a Moho reflection.

Seismic modelling method and resulting P-wave velocity model

Trial and error forward modelling was carried out using the ray-tracing SEIS83 package (Červený & Pšencík 1984) supplemented with the graphical interface MODEL (Komminaho 1998) and ZPLOT (Zelt 1994). The modelling algorithm implements ray theory and calculates ray paths, travel times and synthetic seismograms in a high-frequency approximation. The model consists of layers with smoothly varying velocities, separated
by discontinuities. In each layer, the P-wave velocity is parameterized in an irregular rectangular grid and interpolated by bicubic splines. In this study, an initial model of the uppermost crust was based on data provided by a number of previous high-resolution interpretations of seismic velocities in the area and on data from over a dozen boreholes located on or nearby the profile (cf. Fig. 1) and nearby shallow seismic reflection and refraction investigations (Khortov & Neprochnov 2006; Tsiokha et al. 2008; Scott 2009; Stovba et al. 2009; Yegorova et al. 2010; Gozhky et al. 2011; Nikishin & Petrov 2013). Subsequently, the velocity model of the deeper layers was sought iteratively: the travel times were calculated for the initial velocity model and compared with the observed travel times. Next, the model was modified in order to minimize the misfit. The modelling also involved the calculation of synthetic seismograms and a qualitative comparison of the amplitudes of synthetic and observed data. This provided additional constraints on the velocity gradients and contrasts at velocity discontinuities. The iterations proceeded until a qualitatively satisfactory agreement between the observed and calculated travel times and amplitudes for the main phases was obtained.

The two-dimensional ray-tracing forward modelling resulted in the P-wave velocity model shown in Figure 5. Examples of the two-dimensional ray-tracing modelling of the crust for different parts of the profile are shown in Figures 6–8. The part of the profile common with DOBREfraction’99 (e.g. DOBRE-2 WARR PROFILE) was modelled using data from both profiles. The seismic energy was recorded with variable quality for land shots (at offsets from 30 to 535 km) and much lower quality (at offsets up to 50 km) for the Black Sea and (up to 100 km) for the Azov Sea. As a result of the different qualities of the acquired seismic records, the derived velocity model reaches different depths along the profile. In the southern part, the data constrain the velocity model to a depth of not more than 10–14 km, in contrast with the northern part, where the model is constrained down to 40–50 km. Thanks to two long record sections from the Crimean Peninsula, SP15005 and SP15006, with relatively good quality of Pn phase arrivals and PnP arrivals on the OBS 07013 record, it was possible to obtain information about the depth of the Moho in the −320 to −300 km and −270 to 20 km distance intervals.

Resolution analysis of the ray-tracing model

The shot times and locations of the shots and receivers were measured using global positioning system techniques to an accuracy of the order of 1 ms and tens of metres. Such errors are insignificant in a crustal-scale experiment. Uncertainties in velocity and depth in the ray-tracing model resulted primarily from the uncertainties of subjectively picked travel times, which are of the order of 0.1 s. However, the accuracy depends on the actual seismic phase correlated and changes in the quality and quantity of data (e.g. the number of shots and receivers, the effectiveness of the sources, the signal-to-noise ratio, the reciprocity of travel-time branches and ray coverage in the model).

Where the data quality was good, the ray-tracing model predicted the theoretical travel times that fitted the observed travel times for both the refracted and reflected waves with high accuracy. Several modelling tests were performed to assess this. The P-wave velocity in one crustal layer was perturbed by ±0.2 km s\(^{-1}\) with respect to the final model and the Moho depth was perturbed in the range of ±2 km. It was clearly visible that the accuracy of the model was better than these values. Similar tests were performed, among many others, by Janik et al. (2002), DOBREfract ‘99 Working Group (2003), Grad et al. (2006), Šroda et al. (2006) and Grad et al. (2008). Diagrams with theoretical and observed travel times for all the phases along the profile, the ray coverage and the travel-time residuals from forward modelling are shown in Figure 9.

There is generally good agreement, with some exceptions that are not very significant. The general root mean square (RMS) misfit values are acceptable, being 0.29 for sediments, 0.18 for the crust, and 0.30 and 0.23 for the PnP and Pn phases, respectively. The RMS misfit value for refracted phases in the crust is 0.18, whereas for reflected phases it is 0.20. The overall RMS misfit value is 0.25 from 9217 picks. The RMS misfit value for the offshore OBS (OBH) segments is 0.26 from 8435 picks, whereas for the onshore segments it is 0.22 from 782 picks. This means that velocities in the crust, determined mainly from refracted waves, are better constrained than the depths of boundaries determined mainly from reflections. The depths of intra-crustal boundaries are determined with greater confidence than the Moho depth. The onshore segment of DOBRE-2 north of the Azov Sea is generally better than elsewhere.

Fig. 3. Examples of trace-normalized, vertical-component seismic record sections from land shots for P-waves (SP15001–SP15006) filtered by a bandpass filter (2–15 Hz). Pn, seismic refractions from the upper and middle crystalline crust; PnP, reflections from the middle crust discontinuities; PnM, reflected waves from the Moho boundary; Pn, refractions from the sub-Moho upper mantle; PP, reflections from a mantle discontinuity. The reduction velocity is 8.0 km s\(^{-1}\).
Fig. 4. Examples of vertical-component seismic record sections for (a) OBH07001, OBS07003, OBS07004, OBS07006, OBS07009, OBS07012, OBS07013, OBS07019, OBS07026 and (b) OBS07021, OBS07022, OBH07023, OBS0724 from airgun shots. P_{sed}, refractions from the crustal sedimentary layers; P_g, seismic refractions from the upper and middle crystalline crust; P_cP, reflections from the middle crust discontinuities; P_{MP},
Fig. 4. (Continued) reflected waves from the Moho boundary; P_n, refractions from the sub-Moho upper mantle; P,P, reflections from a mantle discontinuity. The reduction velocity is 6.0 km s^{-1}.
Discussion

The combined DOBRE-2/DOBREfraction’99 velocity model, as well as corresponding gravity and total field magnetic anomalies (Entin et al. 2002; Starostenko et al. 2015b) is shown in Figure 5. The magnetic anomalies are derived from air- and ship-borne surveys. The data quality and depth coverage of the velocity model are very good to excellent for DOBREfraction’99, whereas DOBRE-2 has a limited depth coverage and less data redundancy. Nevertheless, as outlined here, the DOBRE-2 model, where coverage does exist, is considered to be robust.

The DOBREfraction’99 part of the combined profile provides an excellent image of the inverted Donbas Foldbelt segment of the Late Palaeozoic Dniepr–Donets intracratonic rift basin within the Sarmatian segment (e.g. Bogdanova et al. 1996) of the East European Craton, including the crustal structure and Moho disposition. The >20 km thick sedimentary succession of the Donbas Foldbelt...
Fig. 6. Examples of model seismic phase travel times on observed record sections (as labelled). P_{sed}, refracted phases from within the sedimentary succession; P_g, refracted phases from the upper and middle crystalline crust; P_cP, reflected phases from discontinuities in the middle crust, P_{MP}, reflected phase from the Moho boundary; P_n, refracted phase from the sub-Moho upper mantle. The reduction velocity is 6.0 km s$^{-1}$.
consists of mainly middle to Late Devonian and Carboniferous rocks and displays velocities that are generally high for sedimentary units (up to 5.9 km s$^{-1}$) because of their burial and diagenesis prior to the uplift of the southern margin of the basin in the Early Permian and compressional inversion, including mild folding and uplift in the Late Cretaceous (e.g. Stovba & Stephenson 1999). Details of the DOBREfraction’99 velocity model and how it compares with its coincident deep seismic reflection profile (cf. Fig. 2) can be found elsewhere (e.g. DOBREfraction’99 Working Group 2003; Maystrenko et al. 2003; Stephenson et al. 2006; Lyngsie et al. 2007).

The entire East European Craton crystalline crust is incorporated into the velocity model for the overlap part of the combined DOBRE-2/DOBREfraction’99 profile (Fig. 5; cf. Fig. 1), covering the Azov Massif segment of the East European Craton. The Moho depth in this area is about 40 km. There is a suggestion in the DOBRE-2 results that the Moho depth increases by several kilometres (perhaps down to c. 47 km) below the Scythian Platform from the southern East European Craton boundary to the Crimea–Caucasus compressional zone, although the velocity model is relatively poorly constrained in this region below depths of 10–15 km (cf. Figs 6–8). In the southwestern part of the model, beneath the Black Sea, a possible fragment of the Moho discontinuity was modelled at a depth of about 35 km, based on P_{MP} arrivals (Figs 4a & 7). In this part of the model, velocities in the lower crust were assumed rather than inferred from the data.

For the most part, the DOBRE-2 only model (negative distances on Fig. 5) consists mainly of what can be interpreted as metasedimentary and sedimentary strata (P-wave velocity $c. < 5.9$ km s$^{-1}$), exceptions being basement uplifts, both with ‘domal’ shapes, beneath the southern Azov Sea and the Black Sea and, most notably, the shallow ($c. < 4$ km) crystalline basement inferred beneath the

Fig. 7. Model seismic phase travel times on observed record sections OBS07013 and OBS07021 (middle panel) with corresponding ray paths (lower panel) and synthetic sections (upper panel). P_{sed}, refracted phases from within the sedimentary succession; P_{PP}, refracted phases from the upper and middle crystalline crust; P_{MP}, reflected phases from discontinuities in the middle crust; P_{MP}, reflected phase from the Moho boundary; P_{n}, refracted phase from the sub-Moho upper mantle. The reduction velocity is 6.0 km s$^{-1}$.
northern part of the Azov Sea (km – 100 to 0), the area of the North Azov Trough; Fig. 1).

Figure 10 shows the DOBRE-2 only part of the velocity model accompanied by a geological interpretation in two-way travel time of the coincident DOBRE-2 regional near-vertical reflection profile (cf. Fig. 2). The Black Sea segment of the latter is described in more detail elsewhere in this book (Sydorenko et al. this volume, in prep). The geological cross-section shows how the various tectonic units mapped in Figure 1 are expressed geologically in the shallow subsurface and how this compares with the DOBRE-2 velocity model.

One important first-order inferred crustal boundary expected to lie within the crystalline crustal basement of the region crossed by DOBRE-2, although the basement is poorly and rather incompletely imaged in the DOBRE-2 velocity model, is the boundary between the East European Craton (here, its Azov Massif segment) and the basement of the Scythian Platform. The nature and possible significance of this boundary has been discussed extensively elsewhere (e.g. Sollogub 1987; Stephenson et al. 2004; Saintot et al. 2006a, and references cited therein). East European Craton basement rocks in the area of the velocity model are known from sampling studies to consist of Archaean–Proterozoic granitic and gneissic to migmatic rocks (Gerasimov et al. 2008; Ulanovskaia et al. 2011). Presumed Scythian Platform basement rocks recovered from wells in the Azov Ridge–Main Azov Uplift area (wells El-1, Zhovt-245 and

Fig. 8. Model seismic phase travel times on observed record sections for SP15001 (middle panel) with corresponding ray paths (lower panel) and synthetic section (upper panel). P_r, refracted phases from the upper and middle crystalline crust; P_P, reflected phases from discontinuities in the middle crust, P_M, reflected phase from the Moho boundary; P_s, refracted phase from the sub-Moho upper mantle. The reduction velocity is 8.0 km s^{-1}.
Beis-201; Fig. 1), at depths ranging from 668 to 1631 m, consist of metamorphosed volcanogenic–terrigenous formations that are also considered to be of Precambrian age (Ulanovskaia et al. 2011), although there is no diagnostic faunal or radiometric age data.

In terms of the geological features mapped on Figure 1 and labelled on the cross-section in Figure 10, the North Azov Trough lies on the East European Craton basement, whereas the Azov Ridge is formed of Scythian Platform basement. The former consists of a thin, faulted layer of Mesozoic and younger sediments overlying Archaean–Proterozoic East European Craton crystalline rocks, with the latter lying below a thicker Mesozoic–Cenozoic sedimentary succession. The boundary between these two segments corresponds to the Main Azov Fault, which can, accordingly, be
Fig. 10. The DOBRE-2 velocity model above 18 km (lower panel) and interpreted shallow geology in two-way travel time (TWT) (upper panel) from coincident DOBRE-2 seismic reflection profile (cf. Sydorenko et al. this volume, in prep) and other seismic and geological studies (e.g. Gozhyk et al. 2006; Afanasenkov et al. 2007; Khain et al. 2009; Yegorova et al. 2013). Structural features on the geological cross-section correspond with those in Figure 1, except for the Main Azov Fault and inferred Novotitarivsky Fault, which are mentioned in the text. P-wave velocity units are km s$^{-1}$ with the same colour bar as in Figure 5. AR-PR, Archaean–Proterozoic; T-J, Triassic-Jurassic; K, Cretaceous; P, Palaeogene; N, Neogene; Q, Quaternary.
taken to represent at least the shallow expression of the East European Craton–Scythian Platform boundary in the Azov Sea. The velocity model in Figure 10 shows that there is also an abrupt velocity difference that can be interpreted as a deeper expression of the Main Azov Fault in this position down to at least a depth of 12 km. Velocities on the southern (Scythian Platform) side of this structure are slightly lower than on the northern (East European Craton) side and the velocity gradient has a different orientation. The 5.6–5.8 km s\(^{-1}\) velocity contours on the southern side of this structure display a fairly steep dip to the north, sub-parallel to a poorly defined, but robustly inferred, basement horizon lying to the south where velocities are >6.0 km s\(^{-1}\).

Although the DOBRE-2 velocities inferred on the southern side of the Main Azov Fault are <6.0 km s\(^{-1}\), somewhat less than those characterizing the East European Craton crystalline basement to the north, the borehole data suggest that the sub-Mesozoic sedimentary Scythian Platform basement also consists of Precambrian crystalline rocks, although with a different bulk lithology (of metasedimentary affinity) from that of the East European Craton. Accordingly, the Scythian Platform basement may have a different tectonic history from that of the East European Craton. It is also noted that the narrow zone of uplifted basement below the southern part of the Azov Sea (km –160) inferred in the velocity model at c. 6 km depth may have a velocity slightly higher than the adjacent East European Craton crust to the north. It is interpreted to represent Scythian Platform basement and, as such, is somewhat heterogeneous, of continental affinity and probably of Precambrian age.

Saintot et al. (2006a) considered the Scythian Platform to be a marginal part of the East European Craton affected by Neoproterozoic–Early Palaeozoic tectonic processes. Similarly, Gee & Stephenson (2006) suggested that the Scythian Platform basement may be part of a belt of lithosphere accreted, or at least strongly tectonically overprinted, to the northeastern and southeastern margins of the East European Craton during the Neoproterozoic.

The DOBRE-2 velocity model demonstrates that the East European Craton and Scythian Platform basements, at least in the Azov Sea, have different affinities and that the latter was subject to tectonic subsidence and sedimentary basin formation in the Jurassic or earlier; however, little can be said about the underlying crystalline basement. The pre-Cenozoic sediments in this part of the Azov Sea, which are interpreted to correspond in general to velocities of 5.4–5.8 km s\(^{-1}\) in the DOBRE-2 model, are reportedly middle Triassic–Lower Jurassic argillites, interbedded with siltstones and sandstones, and Upper Jurassic limestones (Gozhyk et al. 2006; Ulanovskaia et al. 2011). Sediments displaying similar velocities in the Black Sea are interpreted as Upper Jurassic limestones (Robinson et al. 1995), thought to be part of a single ‘Neo-Tethyan’ carbonate platform in this region (Nikishin et al. 2011).

The units to the south of the ‘domal’ Scythian Platform basement unit (\(V_p = 6.21 \text{ km s}^{-1}\)) centred around km –160 are interpreted as (meta)sedimentary (velocities c. 5.4–5.7 km s\(^{-1}\)) and may be as thick 20–22 km based on the short 5.7 km s\(^{-1}\) boundary at km –220 seen in Figure 5 (lower panel). The boundary between these metasedimentary units and the Scythian Platform basement unit to their north is very steep and its position coincides approximately with the location of the inferred Novotitarivsky Fault (Gozhyk et al. 2006; Khain et al. 2009). This roughly east–west-trending fault is traced to a depth of about 11 km in the DOBRE-2 velocity model (Fig. 10). It may be deeper (20–23 km) according to other interpretations of deep seismic sounding data in the area and has been traditionally considered as the northern limit of the western Indolo-Kuban Trough (Kerimov 2004; Panina 2009). The DOBRE-2 velocity model supports the existence of such a deep structure and that it is indeed a sedimentary basin bounding fault; the sedimentary basin formed on Scythian Platform basement and is therefore younger than this basement. The southern margin of the inferred deeply buried ‘sedimentary basin’ is the basement uplift at c. 10–11 km depth beneath the Shatsky Ridge of the northern Black Sea (km –340), with the implication that this unit also consists of Scythian Platform basement. This is in accordance with local tomography models of the area, which have been interpreted as indicating that basement in this area could also be of Scythian Platform basement affinity (Gobarenko et al. 2015).

According to the DOBRE-2 velocity model, the Moho depth increases from 40 km beneath the Azov Massif to about 47 km in the area of the inferred Novotitarivsky Fault (km –170), possibly reflecting the flexural effects of loading by the Indolo-Kuban Trough in its foredeep setting with respect to the main Crimea–Caucasus compressional zone. The DOBRE-2 model Moho depth in this area is supported by the results of the east–west-oriented DOBRE-5 profile, which crosses DOBRE-2 on the Kerch Peninsula (cf. Fig. 5; km –210) and shows a Moho depth of 47–48 km (Starostenko et al. 2015a). The DOBRE-5 velocity model reports velocities <6 km s\(^{-1}\) down to a depth of about 15 km, consistent with the sedimentary layer inferred on the DOBRE-2 model to its depth limit of 10–11 km. The intervening crystalline crustal layer in DOBRE-5 has velocities of 6.8–6.9 km s\(^{-1}\), also similar to what is tentatively inferred in the neighbouring Azov Sea segment of the DOBRE-2 model.
The gravity and magnetic anomalies shown in Figure 5 are broadly in agreement with the DOBRE-2 velocity in this area. The main gravity high along the profile, centred at about km − 240, roughly corresponds with the axis of the Crimea–Caucasus compressional zone in the vicinity of the Kerch Peninsula, indicative of the higher velocity (and denser) rocks uplifted into shallower structural levels below the inversion axis. The view that these are sedimentary rocks of an older, deeply buried sedimentary basin, as suggested, is supported by the absence of a magnetic anomaly in the same region. In contrast, where the velocity model depicts what are interpreted here as basement uplifts north and south of the inversion zone (km − 160 and km − 340), there are approximately coincident magnetic highs suggestive of shallower basement in these areas.

However, whatever the crystalline basement is in the area south of the Azov Sea, it has been highly disturbed, presumably intruded and deformed, during the Mesozoic (and possibly early Cenozoic) formation of the Eastern Black Sea and the subsequent period of compressional tectonism leading to the Crimea–Caucasus compressional zone crossed by DOBRE-2 north of the EBSB. These tectonic events, and possibly earlier events, have shaped the heterogeneous architecture of the sedimentary successions imaged more clearly and more completely in the DOBRE-2 velocity model. In general, it is suggested that those successions characterized by velocities of 4.5–5 km s\(^{-1}\) and less may be associated with extension of the Black Sea and the inversion stages of sedimentary basin formation, whereas those with velocities higher than this (up to c. 5.8–5.9 km s\(^{-1}\)) may be indicative of earlier tectonic settings, although this cannot be said with certainty.

Summary and conclusions

The DOBRE-2 WARR profile crosses the Azov Massif, the adjacent Scythian Platform and the northern margin of the Alpine–Tethys orogenic belt, the last as expressed by the Crimea–Greater Caucasus compressional zone and the contiguous Azov Sea and northern part of the eastern Black Sea. The DOBRE-2 profile is a direct prolongation of the DOBREfraction’99 profile (cf. DOBREfraction’99 Working Group 2003), together forming one continuous transect of 775 km length.

The DOBRE-2 WARR data, consisting of a number of shot gathers from onshore shot points as well as numerous OBH and OBS records in the Azov and Black seas, were modelled using a ray-tracing method. The resulting velocity model is well constrained to uppermost mantle depths beneath the Azov Massif (and contiguous crustal segments covered by DOBREfraction’99) and within the upper crust (to a depth of 10–15 km) beneath the Azov Sea, Kerch Peninsula and northern part of the EBSB. The data provide some coverage of the entire crust beneath the Azov Sea area.

The main results are as follows. There are two velocity domains that are interpreted to consist of sedimentary or metasedimentary successions, characterized by velocities in the ranges 1.8–3.9 and 5.4–5.8 km s\(^{-1}\), respectively. These overlie a 6.2–6.8 km s\(^{-1}\) layer that represents the crystalline crust. The depth of the underlying Moho discontinuity increases from 40 km beneath the Azov Massif to 47 km beneath the Crimea–Caucasus compressional zone.

This generally shallower sedimentary domain (e.g. 1.8–3.9 km s\(^{-1}\)) is thickest on either side of the Crimea–Caucasus compressional zone centred on the Kerch Peninsula and is interpreted to consist primarily of sedimentary rocks of Mesozoic and younger age deposited during the extensional tectonic phase dominated by the formation of the Black Sea (mainly Cretaceous–Paleocene) and during the subsequent compressional phase of Crimea–Caucasus deformation (Eocene and younger).

The generally deeper sedimentary domain (5.4–5.8 km s\(^{-1}\)) is interpreted to consist primarily of highly indurated sedimentary rocks of (Mesozoic–Palaeozoic) and older age. This layer is thin below the northern part of the Azov Sea and on the Azov Massif (or, indeed, absent with the shallowest velocity unit in this area being <5.4 km s\(^{-1}\)) and thickens abruptly in the area of the Main Azov Fault, which is mapped in the Azov Sea by shallow seismic studies. This is imaged in the velocity model by a decrease in lateral velocity from 6.0–6.2 km s\(^{-1}\) (crystalline crustal basement) to 5.6–5.8 km s\(^{-1}\) (metasedimentary rocks) to a depth of 12 km, interpreted to be the deeper expression of the Main Azov Fault and indicating a southerly dip of this fault of about 40°. This structure can be taken as the boundary between the crust of the East European Craton (Azov Massif) to the north and the crust of the Scythian Platform to the south.

The metasedimentary rocks of the Scythian Platform south of the Main Azov Fault are thought to be of Precambrian age based on geological evidence and they are bounded to the south by an uplift of crystalline basement (e.g. 6.2–6.8 km s\(^{-1}\)) to a depth of about 6 km. A substantial (14 km) and sharp deepening of the 5.4–5.8 km s\(^{-1}\) layer marks the southern limit of the inferred uplift of the crystalline basement and corresponds to the position of the inferred Novotitivirsky Fault, which has been considered to be the northern limit of the mainly syn-compressional (foredeep) Indol–Kuban Trough. Its deeper expression, as seen in the DOBRE-2 velocity model, indicates the possibility...
of an older sedimentary succession underlying the younger Indo-Kuban succession.

An antiformal ‘uplift’ of crystalline basement to about 11 km is inferred beneath sedimentary successions underlying the Shatsky Ridge area of the northern EBSB. A velocity of 6.28 km s\(^{-1}\) is inferred for the basement rocks in this area, not dissimilar to that of the northern margin of the Indolo-Kuban Trough and deeper sedimentary successions (6.21 km s\(^{-1}\)).

The fieldwork and data acquisition along the DOBRE-2 profile were carried out as an international collaboration. The authors sincerely thank the many people and organizations from Ukraine, Denmark, Germany, Poland and the Netherlands who contributed to DOBRE-2, especially the technical experts during the field expedition. We express our gratitude to their staff for technical support as well as to the crews of the ships *Iskatel* and *Topaz*, who actively participated in the offshore operations. The authors also thank the chief editor of this Special Publication, Marc Sosson (University of Nice Sophia Antipolis, France) and two reviewers – Randy Keller (University of Oklahoma, USA) and an anonymous reviewer – for helpful comments and suggestions. This work was partly supported within statutory activities No. 3841, 36–40.

References

